Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Plant Cell Rep ; 43(1): 14, 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38135793

RESUMO

KEY MESSAGE: Overexpressing CsGGCT2;1 in Camelina enhances arsenic tolerance, reducing arsenic accumulation by 40-60%. Genetically modified Camelina can potentially thrive on contaminated lands and help safeguard food quality and sustainable food and biofuel production. Environmental arsenic contamination is a serious global issue that adversely affects human health and diminishes the quality of harvested produce. Glutathione (GSH) is known to bind and detoxify arsenic and other toxic metals. A steady level of GSH is maintained within cells via the γ-glutamyl cycle. The γ-glutamyl cyclotransferases (GGCTs) have previously been shown to be involved in GSH degradation and increased tolerance to toxic metals in plants. In this study, we characterized the GGCT2;1 homolog from Camelina sativa for its role in arsenic tolerance and accumulation. Overexpression of CsGGCT2;1 in Camelina under CaMV35S constitutive promoter resulted in strong tolerance to arsenite (AsIII). The overexpression (OE) lines had 2.6-3.5-fold higher shoots and sevenfold to tenfold enhanced root biomass on media supplemented with AsIII, relative to wild-type plants. The CsGGCT2;1 OE lines accumulated 40-60% less arsenic in root and shoot tissues compared to wild-type plants. Further, the OE lines had ~ twofold higher chlorophyll content and 35% lesser levels of malondialdehyde (MDA), an indicator of membrane damage via lipid peroxidation. There was a slight but non-significant increase in 5-oxoproline (5-OP), a product of GSH degradation, in OE lines. However, the transcript levels of Oxoprolinase 1 (OXP1) were upregulated, indicating the accelerated conversion of 5-OP to glutamate, which is further utilized for the resynthesis of GSH to maintain GSH homeostasis. Overall, this research suggests that genetically modified Camelina may have the potential for cultivation on contaminated marginal lands to reduce As accumulation; thereby could help in addressing food safety issues as well as future food and biofuel needs.


Assuntos
Arsênio , Brassicaceae , Humanos , Arsênio/toxicidade , Biocombustíveis , Brassicaceae/genética , Brassicaceae/metabolismo , Glutationa/metabolismo , Homeostase
2.
Diagnostics (Basel) ; 13(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37443567

RESUMO

We have been developing a novel approach to identify cognitive impairment-related biomarkers by profiling brain-enriched and inflammation-associated microRNA (miRNA) in plasma specimens of cognitively unimpaired and cognitively impaired patients. Here, we present an analytical validation of the novel miRNA panel, CogniMIR®, using two competing quantitative PCR technologies for the expression analysis of 24 target miRNAs. Total RNA from the plasma specimens was isolated using the MagMAX mirVana Kit, and RT-qPCR was performed using stem-loop-based TaqMan and LNA-based qPCR assays. Evaluation of RNA dilution series for our target 24 miRNAs, performed by two operators on two different days, demonstrated that all CogniMIR® panel miRNAs can be reliably and consistently detected by both qPCR technologies, with sample input as low as 20 copies in a qPCR reaction. Intra-run and inter-run repeatability and reproducibility analyses using RNA specimens demonstrated that both operators generated repeatable and consistent Cts, with R2 values of 0.94 to 0.99 and 0.96 to 0.97, respectively. The study results clearly indicate the suitability of miRNA profiling of plasma specimens using either of the qPCR technologies. However, the LNA-based qPCR technology appears to be more operationally friendly and better suited for a CAP/CLIA-certified clinical laboratory.

3.
Pediatr Blood Cancer ; 67(6): e28276, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32196952

RESUMO

BACKGROUND: Genetic alterations in multiple cell signaling pathways are involved in the molecular pathogenesis of thyroid cancer. Oncogene mutation testing and gene-expression profiling are routinely used for the preoperative risk management of adult thyroid nodules. In this study, we evaluated the potential value of miRNA biomarkers for the classification of pediatric thyroid lesions. PROCEDURE: Double-blind case-control study with 113 resected pediatric lesions: 66 malignant and 47 benign. Quantitative and qualitative molecular data generated with a 10-miRNA expression panel (ThyraMIR) and a next-generation sequencing oncogene panel (ThyGeNEXT) were compared with clinicopathological parameters. RESULTS: miRNAs were differentially expressed in benign versus malignant tumors with distinct expression patterns in different histopathology categories. The 10-miRNA classifier identified 39 (59%) malignant lesions with 100% specificity. A positive classifier score was associated with lymph node metastasis, extrathyroidal extension and intrathyroidal spread. Genetic alterations associated with increased risk for malignancy were detected in 35 (53%) malignant cases, 20 positive for point mutations in BRAF, HRAS, KRAS, NRAS, PIK3CA, or TERT and 15 positive for gene rearrangements involving ALK, NTRK3, PPARG, or RET. The 10-miRNA classifier correctly identified 11 mutation-negative malignant cases. The performance of the combined molecular test was 70% sensitivity and 96% specificity with an area under the curve of 0.924. CONCLUSIONS: These data suggest that the regulatory miRNA pathways underlying thyroid tumorigenesis are similar in adults and children. miRNA expression can identify malignant lesions with high specificity, augment the diagnostic yield of mutation testing, and improve the molecular classification of pediatric thyroid nodules.


Assuntos
Biomarcadores Tumorais/genética , Análise Mutacional de DNA/métodos , MicroRNAs/genética , Mutação , Neoplasias da Glândula Tireoide/classificação , Neoplasias da Glândula Tireoide/diagnóstico , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Método Duplo-Cego , Feminino , Seguimentos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Prognóstico , Neoplasias da Glândula Tireoide/genética
4.
J Mol Diagn ; 22(3): 355-367, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31866571

RESUMO

Molecular analysis is used to evaluate the risk of malignancy for thyroid fine-needle aspirates, identified as indeterminate by microscopic cytology, on the basis of the detection of various oncogenic DNA mutations and fusion transcripts or on the use of various mRNAs or miRNA-based classifier algorithms. Our approach has been to use a combination test using the detection of oncogenic mutations/fusion transcripts and an miRNA expression-based classifier algorithm. To improve the performance of the combination test, the next-generation sequencing (NGS)-based mutational panel was expanded from the detection of 5 oncogenes to 10 oncogenes and tumor suppressor genes and the detection of fusion transcripts was increased from 6 to 38. Herein, we describe the assay development of the expanded panel NGS test and optimization of various steps for the library preparation of multiplexed target genes to maintain quality parameters for sequencing and to improve the robustness of the test for use in clinical testing in a College of American Pathologists/Clinical Laboratory Improvements Amendments-certified laboratory. Technical hurdles in NGS library preparation for the sequencing of both normal and high guanine-cytosine-rich regions, and balanced amplification of various amplicons in highly multiplexed PCRs, were successfully overcome. Analytical validation as a laboratory-developed test (ThyGeNEXT) included the demonstration of assay reproducibility, lower limit of detection, as well as other fundamental quality parameters.


Assuntos
Biomarcadores , Análise Mutacional de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Nódulo da Glândula Tireoide/diagnóstico , Nódulo da Glândula Tireoide/etiologia , Alelos , Substituição de Aminoácidos , Biomarcadores Tumorais , Biópsia por Agulha Fina , Análise Mutacional de DNA/métodos , Diagnóstico Diferencial , Frequência do Gene , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...